Difference between revisions of "Optimizations"
From GiderosMobile
Line 167: | Line 167: | ||
end | end | ||
</syntaxhighlight> | </syntaxhighlight> | ||
+ | |||
+ | === Luau === | ||
+ | You can take advantage of Luau new features added to Gideros: | ||
+ | * '''[[Integer Divide Operator]]''' | ||
+ | * '''[[Larger and Smaller Operators]]''' | ||
+ | * '''[[Mutation Operators]]''' | ||
+ | * '''[[Native Code Generation]]''' | ||
+ | * '''[[Trigonometry Conversion Operators]]''' | ||
+ | |||
Revision as of 15:23, 14 January 2025
Optimizations
When you're ready to optimize your game, this page can be helpful.
Distance
-- distance (based on simple functions test timer by @antix)
local distance, random, sqrt = math.distance, math.random, math.sqrt
local x1, y1, x2, y2 = random(-10000, 10000), random(-10000, 10000), random(-10000, 10000), random(-10000, 10000)
-- classic (boring!)
local dx, dy
-- with vectors
local p1, p2 = vector(x1, y1), vector(x2, y2)
-- init
local dist = distance(x1, y1, x2, y2)
print("")
print("*** POINT A: "..x1, y1, "POINT B: "..x2, y2)
print("*** DISTANCE: "..dist)
dist = #(p2-p1)
print("*** VECTORS DIST.: "..dist)
print("")
-- tests
local data = {
{
"sqrt ",
function()
dx, dy = x2-x1, y2-y1
dist = sqrt(dx*dx + dy*dy)
end, -- 50ms
},
{
"exponent ",
function()
dx, dy = x2-x1, y2-y1
dist = (dx^2 + dy^2)^0.5
end, -- 37ms
},
{
"multiply/exponent ",
function()
dx, dy = x2-x1, y2-y1
dist = (dx*dx + dy*dy)^0.5
end, -- 40ms
},
{
"multiply/exponent without power",
function()
dx, dy = x2-x1, y2-y1
-- dist = dx*dx + dy*dy
dist = dx^2 + dy^2
end, -- 36ms but wrong result!
},
{
"math.distance ",
function()
dist = distance(x1, y1, x2, y2)
end, -- 53ms
},
{
"Luau VECTORS ",
function()
dist = #(p2-p1)
end, -- 24ms => this is our WINNER (Gideros 2024.11+)
},
}
-- run all functions
for i = 1, #data do
local block = data[i]
local func = block[2]
local start = os.timer()
for i = 1, 1000000 do -- 1 million repetitions!
func()
end
local elapsed = math.floor((os.timer() - start) * 1000)
print(block[1].." ("..elapsed.."ms)", "", "distance: "..dist)
end
--[[ RESULTS
*** POINT A: -4709 7129 POINT B: 5172 7263
*** DISTANCE: 9881.908570716489
*** VECTORS DIST.: 9881.908520118976
sqrt (50ms) distance: 9881.908570716489
exponent (37ms) distance: 9881.908570716489
multiply/exponent (40ms) distance: 9881.908570716489
multiply/exponent without power (36ms) distance: 97652117
math.distance (53ms) distance: 9881.908570716489
Luau VECTORS (24ms) distance: 9881.908520118976]]
Sprite Sorting
-- sprite sorting (based on simple functions test timer by @antix)
local random = math.random
local sprites = {}
for i = 1, 64 do
sprites[i] = {}
sprites[i].spr1 = Pixel.new(0x0, 1, 64, 64)
sprites[i].spr1:setPosition(random(1, 640), 48) -- 48, 96
stage:addChild(sprites[i].spr1)
sprites[i].spr2 = Pixel.new(0xff0000, 1, 64, 64)
sprites[i].spr2:setPosition(random(1, 640), 64)
stage:addChild(sprites[i].spr2)
end
local spr1y, spr2y = 0, 0
-- tests
local data = {
{
"swap",
function()
for _, v in pairs(sprites) do
if v.spr1:getY() < v.spr2:getY() then
spr1y, spr2y = v.spr1:getY(), v.spr2:getY()
stage:swapChildren(v.spr1, v.spr2)
end
end
end, -- 816ms (much better than addChildAt)
},
{
"addChildAt",
function()
for _, v in pairs(sprites) do
if v.spr1:getY() < v.spr2:getY() then
spr1y, spr2y = v.spr1:getY(), v.spr2:getY()
stage:addChildAt(v.spr1, stage:getChildIndex(v.spr2))
end
end
end, -- 1272ms
},
{
"async swap",
function()
local function fun()
for _, v in pairs(sprites) do
if v.spr1:getY() < v.spr2:getY() then
spr1y, spr2y = v.spr1:getY(), v.spr2:getY()
stage:swapChildren(v.spr1, v.spr2)
end
end
end
Core.asyncCall(fun) -- profiler seems to be faster without asyncCall (because of pairs traversing?)
end, -- 29ms (the best but has some glitches!)
},
}
-- run all functions
for i = 1, #data do
local block = data[i]
local func = block[2]
local start = os.timer()
for i = 1, 25000 do func() end -- 12500
local elapsed = math.floor((os.timer() - start) * 1000)
print(block[1].." ("..elapsed.."ms)", spr1y, spr2y)
end
Luau
You can take advantage of Luau new features added to Gideros:
- Integer Divide Operator
- Larger and Smaller Operators
- Mutation Operators
- Native Code Generation
- Trigonometry Conversion Operators
More to come, God's willing!